A IPv4 vs. IPv6 comparison is common among people who are looking for an efficient internet address. Statistics say that more than 60 percent of the global population uses the Internet medium. These growing Internet users also increase the demand for unique addresses. Another interesting fact is that people usually have more than one device
A IPv4 vs. IPv6 comparison is common among people who are looking for an efficient internet address. Statistics say that more than 60 percent of the global population uses the Internet medium. These growing Internet users also increase the demand for unique addresses. Another interesting fact is that people usually have more than one device connected to the network. This rapidly increases the internet devices to multiple folds. To handle these unique ID requirements Internet Assigned Number Authority (IANA) upgraded the IP versions.
Identifying an individual among millions is not easy unless we have a unique identifier, like contact numbers, identification numbers, or residential addresses that are distinct for each person. In the same way, to identify and communicate with a computer node in the network, we will need an IP address for each system. Here let’s compare and contrast IP addresses through IPv4 vs IPv6 comparisons.
An Internet Protocol (IP) is a set of rules to route the data packets to their concerned destination within the network. With these rules, the Internet Assigned Number Authority (IANA) manages and distributes IP addresses to computers. These IP addresses are produced mainly to identify a specific computer in the network and route the messages to the right destination.
IPv4 vs IPv6 comparisons speaks about the two different versions of IP addresses. Both versions’ main motive is to identify the system and help route data packets from the source to the right destination. They differ in size as IPv4 provides 4,294,967,296 addresses, while IPv6 can provide 2^128 combinations that can exceed 340 trillion addresses. This is 4 billion times higher than IPv4 addresses. The IP addresses hold network ID and host ID where the network ID identifies the network while the host ID denotes the device in that network.
Though IPv4 is the fourth version of Internet Protocol addressing, this is the most commonly used version now. IPv4 was first deployed in 1983 in ARPANET (Advanced Research Project Agency Network). IPv4 is represented in dot-decimal notation, which has four parts separated by dots or periods. Each part containing 8 bits of the address is known as an octet, so IPv4 is a 32-bit addressing system. Each octet can range from 0 to 255.
Let us consider the IP address, 49.207.180.7, for example. Computers only understand binary forms, so let’s learn to convert the decimal value to binary forms.
8-Bit Octet Representation:
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |
49 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
207 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
180 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
To convert a dot-decimal to binary numbers. Use the structure of 8-bit octet representation that increases, like 2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, and 2^8 as 1,2,4,8,16,32,64, and 128 respectively.
IPv6 is the latest and one of the two most popular versions of IP addresses in use. It provides a large address space as it is a 128-bit address scheme. It consists of 8 components and each component is separated by dots or periods and has a 16-bit address. On the whole, the IPv6 address scheme can provide (3.4*10^38), which may be more than 340 trillion addresses. Internet Protocol version 6 came into the picture to resolve the address exhaustion problem in 1998 to replace the IPv4 addresses and increase address availability. The IANA distributed all the IPv4 addresses and they ran out of the fourth version of IP addresses around 2011, which is when IPv6 came into existence.
Here is an example of an IPv6 address:
684D:1101:212:3343:4434:5525:6:87
IPv4 | IPv6 |
---|---|
Internet Protocol version 4. | Internet Protocol version 6. |
32-bit addressing scheme. | 128-bit addressing scheme. |
Provides 2^32 combinations of addresses. | Provides 2^128 combinations of addresses. |
Represented in dot-decimal notation. | Represented in hexadecimal notation. |
Numerical addressing. | Alpha-numeric addressing. |
Provides nearly 4,294,967,296 IP addresses. | Can provide 340 trillion trillion trillion IP addresses. |
8 bits per group. | 16 bits per group. |
Has 5 different classes Class A, Class B, Class C, Class D, and Class E. | IPv6 does not have any classes. |
Supports manual and DHCP configurations. | Supports manual, DHCP, auto, and renumbering configurations. |
Security features are application dependent. | Provides a built-in security feature. |
Cannot identify the packet flow. | The packet flow can be identified with the flow label in the header. |
The minimum packet size is 576 bytes. | The minimum packet size is 1208 bytes. |
Not compatible with mobile devices. | Compatible with mobile devices. |
Provides multicast, broadcast, and unicast IP addresses. | Provides anycast, unicast, and multicast. |
It is easy to debate Ipv4 vs IPv6 by comparing the good and bad sides of each version, but it is not that easy to point to one of them as the best. People may claim that IPv6 is the best to use because it is the latest version and provides a large scale of IP addresses, but this is not true. Though IPv6 is going to be the future of networking, it is not compatible with many of the platforms and devices that are currently compatible with IPv4. So, they will have to work in parallel with IPv4 to achieve balance and make use of the good sides in both versions.
IPv4 and IPv6 are not compatible with each other. So, it is impossible to send requests from IPv4 to IPv6 or vice versa. To resolve this problem, we have a few techniques that can help the users to utilize the content of IPv4 and IPv6 simultaneously.
IPv4 and IPv6 are the unique address locators of the devices on the network. This eases the communication by routing the message to the destination. But, here comes the problem. Some internet users do not prefer revealing their identity on the network. Still, they need an IP address to send and receive messages. This is where the proxy comes in.
Proxy servers make use of their own addresses to uniquely identify their customer’s locations. By this proxy, users can stay anonymous in the network and still represent themselves in the network with the proxy address.
ProxyScrape furnishes high-speed and reliable proxies that can help users scrape unlimited data. They provide proxies that support all versions of Internet Protocol and Socks Protocol. Check out our offers and prices.
Fake IP Address to Mask Your Identity
What to Do if Your IP Address Has Been Banned?
IPv4 vs IPv6 comparison involves the two most commonly used Internet Protocol addresses versions. These versions uniquely identify and interact with the systems. IPv6 addresses provide a huge number of addresses that can be used in the future as IPv4 is already running out of addresses. However, IPv6 cannot work independently because most of the platforms are configured with IPv4, and IPv4 and IP6 are not compatible with each other. To fix this incompatibility, people go for techniques like tunneling, Dual-Stack, and Network Address Translation to make the address versions communicate with each other.